Variational Analysis in Semi-Infinite and Infinite Programming, I: Stability of Linear Inequality Systems of Feasible Solutions
نویسندگان
چکیده
This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to parametric problems of semi-infinite and infinite programming, where decision variables run over finite-dimensional and infinite-dimensional spaces, respectively. Part I is primarily devoted to the study of robust Lipschitzian stability of feasible solutions maps for such problems described by parameterized systems of infinitely many linear inequalities in Banach spaces of decision variables indexed by an arbitrary set T. The parameter space of admissible perturbations under consideration is formed by all bounded functions on T equipped with the standard supremum norm. Unless the index set Tis finite, this space is intrinsically infinite-dimensional (nonreflexive and nonseparable) of the l00-type. By using advanced tools of variational analysis and exploiting specific features of linear infinite systems, we establish complete characterizations of robust Lipschitzian · -st-abi1ity--entirely-v1a-tnelrinit1ah:lata·with-c-omputirrg·the exact·bnund-of bipschitzian-moduli;··-A· -· crucial part of our analysis addresses the precise computation of the coderivative of the feasible set mapping and its norm. The results obtained are new in both semi-infinite and infinite frameworks.
منابع مشابه
Variational Analysis in Semi-Infinite and Infinite Programming, II: Necessary Optimality Conditions
This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to problems of semi-infinite and infinite programming with feasible solution sets defined by parameterized systems of infinitely many linear inequalities of the type intensively studied in the preceding development [5) from our viewpoint of robust Lipschitzian stability. We present me...
متن کاملQuantitative Stability and Optimality Conditions in Convex Semi-Infinite and Infinite Programming
This paper concerns parameterized convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional Banach (resp. finite-dimensional) spaces and that are indexed by an arbitrary fixed set T . Parameter perturbations on the right-hand side of the inequalities are measurable and bounded, and thus the natural parameter space is l∞(T ). Based on ad...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملA new solving approach for fuzzy multi-objective programming problem in uncertainty conditions by using semi-infinite linear programing
In practice, there are many problems which decision parameters are fuzzy numbers, and some kind of this problems are formulated as either possibilitic programming or multi-objective programming methods. In this paper, we consider a multi-objective programming problem with fuzzy data in constraints and introduce a new approach for solving these problems base on a combination of the multi-objecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 20 شماره
صفحات -
تاریخ انتشار 2009